
3.Contiunance Wavelet
Transform

Instrumentation Systems Lab. Prof. Zhang Zhong



2.1.1 Statistics Method
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*Method adapted for unsteady signal analysis：

1) Short Time Fourier transform, STFT

2) Wavelet Transform,WT

1) Signal Type and Analysis Method

Important point of  last lesson
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2)Characteristics of the CWT and STFT
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3.1 Introducing Wavelet Transform

1) Definition of the CWT

a : Scale (1/a Frequency)
b : Time

: Mother Wavelet (MW)
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(a) RI–Spline wavelet

(b)Frequency characteristic

3.1.1 Continuance Wavelet Transform (DWT)



Advantages:
・Transforming signal to time-frequency plane and 

making its nature clearly (illustrating)
・Time and frequency resolution can be changed 

with frequency 

Problems:
・

 
Redundancy bases

・How do select Mother wavelet?
・There isn’t a common fast algorithm for calculation.

2) Features of  the CWT



0 10 20 30 40 50
–2.5

0

2.5

t,  ms

101 102 103 10410–6

10–5

10–4

10–3

10–2

f,  Hz

E(
f)

(a) Model signal

(b)Power spectrum

(c)Wavelet transform

a : Scale (1/a Frequency)
b : Time

: Mother Wavelet (MW)

Fig.1 Continuance Wavelet Transform of Model Signal
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3) Example of the CWT



1)Definition of the DWT
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3.1.2 Discrete Wavelet Transform (DWT)

It is octave analysis so bases are not overlap 
(Non-redundancy) 
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2)Fast algorithm Based on MRA (by Mallat )
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Fig.2 Tree algorithm of MRA



Advantages:
・Good compression of signal energy. 
・Perfect reconstruction with short support filters. 
・Non-redundancy. Very low computation cost, order-N only. 

Problems:
・Severe shift dependence. 
・Poor directional selectivity 

in 2-D,3-D etc.

The DWT is normally implemented with a tree of high pass and 
low pass filters, which proposed by Mallat (fast algorithm).

3) Features of the (Real) DWT
7/25
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j: Level
k: Time
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4) Example of the DWT

Fig.3 Discrete Wavelet Transform of Model Signal
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3.2 Selection of MW for the CWT

a : Scale (1/a Frequency)
b : Time

: Mother Wavelet (MW)
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Condition of The MW (admissibility condition):
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This condition can be sampled as following Equation:

So many MW have been proposed and how do select them
be comes problem.

3.2.1 Condition of MW selection



Example of the MW



As is sown in example:
Analysis results are difference if 
we use different MW. It is because 
the MW has different feature, for 
example, Complex type or Real 
Type. For Real type, it has  
symmetric property or no.

Analysis results (1)

Stripe pattern

Continuous pattern



Analysis results (2)
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(a) RI–Spline wavelet

(b)Frequency characteristic

What is reason of non- 
continuance pattern? 

Real MWs Phase (symmetric)



How do select the MW 
becomes Problem, 
although MW is chosen 
freely.

Analysis results (2)

Difference results can 
be obtained from 
different MW which has 
different symmetric 
property
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Fig.8 Example of unsteady jet flow U(t) 
and its fluctuation velocity u(t)

3.2.2 Example of flow turbulence analysis
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Fig. Results obtained by CWT,
where (a) is RI-Spline wavelet, 
(b) is m=4 Spline wavelet. Signal 
is turbulent flow with swirl in the 
cylinder of the engine.
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3.3 Fast Algorithm for the CWT 

3.3.1 Fast Algorithm in frequency domain

It is convolution integral, so it can be changed to next
equation:

By using this equation, CWT can be did fast.
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Comparing calculation cast

CQWT  =MTL(2N-1)

CQFWT =MNT (1+log2 T)

Fig. 9 RCT and RCQ change with octave number

Fig. 9 shows RCT and RCQ (Ratio of Computation Quantity) which change with the 
increase in the number of analysis octaves, and Both RCT and RCQ are expressed with 
the ratio that setting the value of WT in five octaves as 100.  
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The calculation time of FWT increase is small, and oppositely, the calculation time of WT increases abruptly by the increase in the number of analysis octaves.

This is well in agreement with the discussion of RCQ above.



For comparing calculation accuracy, next signal has been
used. The feature of the signal is that its frequency 
change with time, so it is suitable for test signal analysis 
method.
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Fig. 4 RE by using WT

Comparing with conditional algorithm
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Fig. 5 RE by using FWT

But calculation accuracy is not good by comparing with
conditional method. 
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So accuracy of FWT is worse than that of WT.

Why? I think it is because all MWs in the case of the FWT based on the BFA are obtained from the MWs near the Nyquist frequency which have fewer data, and calculation accuracy is low, although they have good localization in the time domain.
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Reason: number of MW is small.
For improving calculation accuracy, we    
need using long MW with large number.

Improving calculation accuracy

3.3.2 Improvement Fast Algorithm

1) The length of data is doubled four 
and FFT of MW is performed.
2) It uses taking out one fourth of the 

obtained data.
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Figure 7 RE by using FWTH

Improving Calculation Accuracy

Fig. 6 RE by using FWT based CBFA
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Best calculation accuracy has be obtained 
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Furthermore, in order to get a high degree of accuracy in the high frequency area, we use up-sampling by using a L-Spline interpolation. 

We assume that the sampling frequency is not changed after the data is interpolated although the number of data increases twofold, so the frequency of each frequency component will fall by half. 

Therefore, the influence due to the reduction of the value near $f_{N}$ is avoidable.

As show in figure, the result obtained by using FWTH is lower than -40dB even over the whole frequency domain. 

Here, in order to obtain high accuracy, the calculation speed was sacrificed because the data length was doubled.



Fig. 10 Measured points of EEG by 
use Ten-twenty electrode system

3.3.3 Example of EEG analysis

プレゼンター
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Here, I’ll introduce the EEG analysis using
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Fig. 11 Time series of EEG

Figure shows EEGs of a 14-year-old girl recorded when she was sitting in a chair and 
opening her eyes. The data sampling frequency is 64Hz . The spike and wave 
complex (SWC) around 3Hz are recorded near 6-8, and 22-24 sec. It is strong in the 
incipit and its generation source is in the depths.

Example of EEG waves
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Figure shows wavelet transform of FP2  
using the FWT, where the ordinates 
denote frequency, transverse time and 
the amplitude |w(a,b)| is shown as the 
color label. Frequency range was 
chosen as four octaves and each octave 
was divided into 48 voices for clarity.

2-4    Hz
4-8    Hz


 
8-13  Hz

13-30Hz

Defined waves in EEG as:

Computation time:
FWT is only 17% of CWT

EEG Analysis
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waves of EEG in point FP2

As is shown in Fig.13, we can observe the active change of the 
 


 


 


 waves before and after SWC occurred between 6-8 sec. The same phenomenon 

was observed before and after SWC occurred between 22-24 sec.
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In order to understand the generating process of SWC, the    waves were reconstructed from the wavelet transform of the EEG in FP2 and those RMS (root mean square) were shown in Fig.13.



Average RE
FWTH: -44.0dB
WT:       0.69dB

Fig.14 RE of EEG in point FP2 from 4 to 12 sec by using FWTH and WT
As shown in Fig. 14, the accuracy obtained with FWTH is higher than WT. The 
average value of the RE of FWTH between 4-12 sec is -44dB and WT is 0.69dB. 
Therefore, we may conclude that our approach proposed in this study is effective for 
EEG analysis in real time with high accuracy and is furthermore useful for general 
signal processing.

Comparing Calculation Accuracy
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This figure shows a example of the RE of EEG by FWTH and WT.



Original Signal s(t)

(1) Hanning Window

(2) Normalize

(3) Fourier Transform

(4) Hilbert Transform
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Phase imformation

It’s suitable for unsteady signal

3.4 Constructing new RMW
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This is the transaction of  making Mother wavelet from the signal

In the WT, all functions can be used as the MW if they satisfy the admissibility condition and many types of MWs, for example, the complex type and real type and so on have been proposed. Understandably, analysis results obtained using different MWs are different. In signal analysis, one often has to first examine the characteristics of the MWs, and then choose one. For example, when analyzing an unfamiliar signal, the Gabor function and the RI-Spline wavelet generally produce better results than other wavelets since they have good localization in the frequency and time domains, and easily match the frequency and scale of the signal. However, for detecting abnormal signals which appear unsteady, the Gabor function and the RI-Spline wavelet can not always give satisfactory results. In addition, the WT can be considered a kind of similarity transform. A signal  is measured by using the wavelet functions  that are defined from the MW  as a scale, and the similarity between the signal  and the wavelet functions  is evaluated by the coefficients of the WT. The authors took advantage of this feature and constituted a Real signal Mother Wavelet (RMW) from an abnormal signal. Then the WT was carried out by using the RMW and the abnormal signal was detected by evaluating the correlation between the RMW and the abnormal signal using the wavelet coefficients. This method was very useful for detecting abnormal signals although it had the following two problems. First, the signal’s phase information could not be obtained since the RMW constructed was a real type MW and the wavelet coefficients oscillated. Second, he RMW is difficult to form when it is not clear what portion of the signal is suitable for the RMW. In this case, it was difficult to narrow down to one with the WT using the Gabor function and the RI-Spline wavelet. 

RMW AND WAVELET INSTANTANEOUS CORRELATION

The WT transforms the signal  which has a finite energy into a function which has two variables, the frequency  and time . The WT is defined by the following formula.

　　        Where  and are conjugate complex functions of each other.  Here, the function  　is the MW which satisfies the following admissibility condition.

Here,  means the Fourier transform of ,  denotes the angular frequency , and 　the frequency. This condition can be simplified to the next equation when  tends to zero as  approaches infinity.

Formula (1) shows that the wavelet transform achieves the time-frequency analysis by transforming the signal   into the function  which has two variables, frequency  and time . Generally, the abnormal signal consists of many components, its strength is various and its generating time is irregular. The WT can show these features clearly in the time-frequency plane, but it can not detect and evaluate its features at the same time because the common MW performs band pass filtering. Therefore, creating a technique for the detection and evaluation of abnormal signals is still a very difficult task. Moreover, as is shown in Eq.(3), any function can be used as the MW if its average value is zero and its amplitude becomes zero sufficiently quickly at a distant point. The Wavelet Instantaneous Correlation Value (WICV)　, which is a value  obtained by the RMW in scale  is shown as follows:

By using　, the detection and evaluation of the abnormal signal’s strength and generating time can be achieved at the same time.

The procedure for constructing the Complex Real signal Mother Wavelet (CRMW) can be summarized as follows: 1) First the characteristic portion of the real signal is isolated and then the real signal is multiplied with a window function. Next the average is removed thereby making it approach zero sufficiently quickly at a distant point and obtaining the RMW . 2) The RMW is normalized so that the norm .

3) The Fourier transform of the RMW  is performed and its frequency spectrum  is obtained. 4) In the negative frequency domain,　  is set to 0, in the positive frequency domain,  is set to 2 and the reverse Fourier transform is performed. Finally the CRMW  can then be obtained.



CONSTRUCTION METHOD OF THE SCRMW

The CRMW has the phase information of the original signal. However, we do not need phase imformation, because the phases of an unsteady signal always change with time. Therefore, in some cases, the phase information should be deleted to generalize more. Therefore, the construction technique of the Symmetric Complex Real signal Mother Wavelet (SCRMW) is applied. Figure 1 illustrates the flowchart of the construction method of the SCRMW. In the figure, steps 1 to 4 are the same as the process of the CRMW [9]. However step 5 is different from the CRMW in that the real part of is set to, and the imaginary part is set zero. As a result, the phase information of all the frequency components has been cut off. In step 6, the inverse Fourier transform was carried out and the SCRMW can be obtained. In addition, the real component of the SCRMW has symmetry and the imaginary component has anti-symmetry. 
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 I will explaine the concept of our research.

This formula is wavelet transformation. This part is called mother wavelet because this is the function and 
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Application on Impact Noise in Case 1

In the EPS system, mechanical noises such as rattle and joint noise sometimes emanate from the front of the vehicle. The first analysis task is to determine the sound sources of various components. This is because, in an efficient sound control strategy, the strongest sound sources must be identified first. However, these kinds of sounds are sometimes periodic and also do not always appear in laboratory repetition. So it is very important to find the noise sources by in-vehicle measurement.

The sensor positions are shown in Figure 2, where A,B,C,D,E show the position of the vibration sensors and F shows the microphone set up near driver’s foot. Sound and vibration signals were simultaneously recorded when the steering wheel rotated in a stationary swing and the noise was evaluated when the noise could be heard in the vehicle test. Impact noise was included in the sound signal. An example of the sound signal measured by microphone F from the vehicle is shown in Figure 3. The impact noise is appeared at around 0.4s. The contour plot of the CWT of the sound signal presents the sound energy distribution in the time-frequency plane in Figure 4. Two dimensional contor plots have been used to show more accurately the time-frequency locations of the sound. The Gabor function is applied to the MW, since it provides a good balance between the time and frequency localization. Ridges represent the distribution of major sound energy. 
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It is evident from the map of Fig.4 that there are three major sound energy areas in the impact noise signal. The first is centered at frequency 360Hz around 0.385s. The second is centered at frequency 750Hz around 0.39s. The last is centered at frequency 150Hz around 0.40s. Figure 5 shows the vibration signals of sensors (A,B,C,D,E). An example CWT of the vibration signal measured by sensor A is plotted in Figure 6. It shows that the major vibration energy is located centered at 700Hz and 0.38s. The CWT of vibration signals of sensors (B,C,D,E) are plotted in Figure 7. It is clear that the patterns are different when the vibration signals are different. 
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Constructing the SCRMW 

In this case, the RMW is selected from the sound signal and the vibration signal by the following conditions. The sound data (shown in Fig.4) from 0.38s to 0.42s was selected as the Real Signal. The SCRMW of the sound's Real Signal was constructed following the steps shown in Fig.1 and the result is shown in Figure 8. SCRMWs of the vibration signals were also constructed. For example, the vibration data of sensor A (shown in Fig.6) from 0.37s to 0.41s was selected as the Real Signal. The SCRMW of the Real Signal selected from the vibration signal is shown in Figure 9. From Fig. 8 and 9, it is clear that the energy of the SCRMW is concentrated around the center of the SCRMW.  In addition, the real component of the SCRMW is symmetric and the imaginary component is anti-symmetric.



Detection of Noise Sources　　　

The Wavelet Instantaneous Correlation (WIC) analysis was done with the SCRMW of the sound or vibration. The WIC values at scale0 indicate a signal which is not expanded. We focused the value at scale0 which means the signal has the same frequency characteristic as the signal of SCRMW. Then,  in scale  is defined by the WICV shown in equation (4) and it is the instantaneous correlation value . The WIC analysis of the vibration signal measured by sensor A was carried out by the SCRMW (shown in Fig.8) constructed from the impact noise and the result is shown in Figure 10. The WIC analysis of the sound signal was carried out by the SCRMW (showing in Fig.9) constructed from the vibration signal measured by sensor A and the result is shown in Figure 11. In the figures the vertical axis shows the scale and the horizontal axis shows the time. Wavelet coefficients magnitude are shown with grayscale shading. Scale0 has a corresponding “centre frequency of MW” which is the frequency gives the best fit. In the case of the SCRMW of the sound signal shown in Fig. 10, the instantaneous correlation value at scale0 gives a little information with time. On the other hand, in the case of the SCRMW of the vibration signal measured by sensor A (shown in Fig.11), correlation values at scale0 have a lot of information with time. Therefore, the WICV   analysis of the sound signal was done by the SCRMW constructed with the vibration signals. The results of  are shown in Figure 12. The  values were changing with time. The sound energy distribution in the time-frequency plane in Fig. 4 shows three strong areas with different times. The times when  is large in Fig. 12 are in good agreement with the times indicated by the sound energy distribution shown in Fig. 4.
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The  values of each sensor were expressed as a black contour map with time and shown in Figure 13. In this map, it is easy to understand the contribution of each vibration signal to the sound as time elapses.  The vibration of sensor B has its first large  value at time 0.383s, and vibration of sensor A has its first large  value at 0.384s. Compared to this, the sensor E signal does not have a large  value. From these results, it has been possible to estimate the generation time and strength of the signal by using  value. Therefore, the WICV is more suitable than conventional correlation methods such as FFT for non-stationary signals, since in this case averaging correlation only is obtained. 
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3.Contiunance Wavelet Transform
3.1 Introducing Wavelet Transform

3.1.1 Continuance Wavelet Transform (DWT)
3.1.2 Discrete Wavelet Transform (DWT)

3.2 Selection of MW for the CWT
3.2.1 Condition of MW selection
3.2.2 Example of flow turbulence analysis

3.3 Fast Algorithm for the CWT 
3.3.1 Fast Algorithm in frequency domain
3.3.2 Improvement Fast Algorithm
3.3.3 Example of EEG analysis

3.4 Constructing new RMW
Wavelet Instantaneous Correlation (WIC)
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